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ABSTRACT 

The adaptive equaliser makes use of adaptive digital filters whose filter coefficients are modified depending on 

the channel characteristics at the front end of the receiver. The noise introduced in the channel gets nullified and 

hence the signal-to-noise ratio of the receiver improves. Discrete Gabor Transform (DGT) helps decorrelate 

input data because of which the convergence speed of the Mean Square Error (MSE) improves considerably.  It 

is found that the time domain LMS equaliser is slow in convergence. To improve the convergence rate and 

MSE floor level transform domain-using DFT, DGT and DWT (2, 5, 6 and 7) has been studied. It is found that 

all the orthogonal transforms perform similar in convergence rate and MSE level. This paper aims at the 

evaluation of channel performance using Gabor transform, which is both frequency and time domain transform. 

The nonlinear channel equaliser using Discrete Gabor Transform is reported in this paper. Though Gabor 

Transform is a nonlinear transform as well as non orthogonal transform it is expected to be better fitted for 

nonlinear channel. Gabor transform based adaptive equaliser, though has a longer training time, has been found 

to have better noise recovery property and Lower MSE level, especially when the additive noise in the channel 

is large.  
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1. ADAPTIVE FILTER IN CHANNEL 

EQUALISER  

Adaptive filter is a programmable filter, whose 

frequency response is adapted in such a way that in the 

output we extract the desired signal without 

degradation and reduce the distortion to the best 

possible extent. The adaptive filter updates its filter 

coefficients from the knowledge of past inputs, and the 

present error generated from the reference and 

estimated output. The update procedure is based on 

any one of the adaptive algorithms. In case of the N-

tap FIR adaptive filter, the desired signals d(k) is 

estimated using a linear combination of delayed 

samples of the input signal x(k) and found to be 

y(k) = X(k)
T
W(k)   (1) 

where, W(k) is the column vector of filter weights at 

the k-th instant and X(k) is a column vector of last N 

input signal samples, which are represented by  

W(k) = [w0(k) ,w1(k) ……, wN – 1(k)]
T
 

and  X(k) = [x(k) x(k – 1) ……x(k – N + 1)]
T
 

The task of the adaptive algorithm is to interactively 

define the value of W(k) at any time k, so as to make 

the mean square error between the desired and the 

estimated signals to the optimum value. The output 

estimation error at k-th instant is given by 

e(k) = d(k) – y(k)     (2) 

The mean square error  is given by  

 = E[e
2
(k)] = E[(d(k) - y(k))

2
] 

  = E[d
2
(k)]-2E[d(k)W

T
X] +E[W

T
XX

TW
]  (3) 

 

The LMS algorithm (4) uses the instantaneous value 

e(k)X(k) to estimate the gradient. The adaptive 
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procedure used by the LMS algorithm is described by 

the following weight vector update formula. 

W(k+1) = W(k) + 2e(k) X(k) (4) 

 

where,  = the convergence gain of the algorithm. 

This formula is a modified version of the steepest - 

descent method. In the steepest - decent technique, 

the weight vector is modified in the direction of 

decreasing gradient of the mean-square error surface 

of the process. 

 

Fig. 1: ADAPTIVE CHANNEL EQUALISER 

For reasons of stability, the range of  is 

maxλ

1
 μ   0 

 
W

*
 = R

-1 
P    (5) 

where max is the maximum eigenvalue of the 

autocorrelation matrix R. It has been shown by 

Widrow et. el (4)that for sufficiently small values 

of , the LMS algorithm converges to the optimum 

Weiner Solution(1). 

3.  NONLINEARITY IN CHANNEL EQUALISER 

 The different types of nonlinearity are 

given as below. 

NL = 0: b(k) = a(k), 

NL = 1: b(k) = tanh(a(k)), 

NL = 2: b(k) = a(k) + 0.2a
2
(k) – 0.1a

3
(k), 

NL = 3: b(k) = a(k) + 0.2a
2
(k) – 0.1a

3
(k) + 

0.5cos(a(k)).    (6) 

 

NL = 0 corresponds to a linear channel model. NL = 1 

corresponds to a nonlinear channel which may occur in 

the channel due to saturation of amplifiers used in the 

transmitting system. NL = 2 and NL = 3 are two 

arbitrary nonlinear channels. The nonlinear channel 

model NL=2 was introduced (ref to Fig. 1) 

 

4.  TIME DOMAIN ADAPTIVE EQUALISER  

A common approach to data transmission is to 

code the amplitudes of successive pulses in a periodic 

pulse train with a discrete set of amplitude levels. The 

coded pulse train is then linearly modulated 

transmitted through the channel, demodulated, 

equalized and synchronously sampled and quantized. 

As a result of distortion of the pulse shape by the 

channel, the number of detectable amplitude levels has 

very often been limited by inter symbol interference 

rather than additive noise. In principle, if the channel 

characteristics are known precisely, it is always 

possible to design an equaliser that will make the inter 

symbol interference (at the sampling instants) 

arbitrarily small. However, in practice a channel is 

random in the sense of obeying one of the ensembles 

of possible channels. Consequently, fixed equalisers 

designed on average channel characteristics may not 

adequately reduce inter symbol interference. An 

adaptive equaliser is then needed which can be trained 

with the guidance of a training signal transmitted 

through the channels to adjust its parameters to 

optimum values.  
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Fig. 2: LMS BASED (TIME DOMAIN) ADAPTIVE FILTER 

If the channel is also time varying, an adaptive 

equaliser operating in a tracking mode is needed which 

can up-to-date its parameter values by tracking the 

changing channel characteristics during the course of 

normal data transmission. In both cases adaptation 

may be achieved by observing or estimating the error 

between actual and desired equaliser responses and 

using this error to estimate the direction in which the 

parameters should be changed to approach the optimal 

values. 

 

5. TRANSFORM DOMAIN ADAPTIVE 

EQUALISER  

 It is a well-known fact that when the input 

sequence is transformed via an orthogonal transform, 

the eigenvalue spread of the input sequence is 

squeezed. To exploit this fact input signal of the time 

domain adaptive equaliser is passed through an 

orthogonal transform. The transform sequence is fed to 

the adaptive algorithm of the equaliser. The 

behavior of this transformed domain equaliser is 

studied in this paper and some important conclusions 

are found out. The LMS algorithm has been used and 

the convergence rate and MSE floor level has been 

chosen as the performance criteria. 

5.1. THE TRANSFORM DOMAIN ADAPTIVE 

LMS EQUALISER ALGORITHM (3) 

 The input vector Xn is first transformed into 

another vector Zn. 

Zn = [Zno, Zn1, …….. ,Zn(N – 1)]
T 

 (7) 

Using an orthogonal transformation 

 Zn = WXn               (8) 

where W is a unitary matrix of rank n.  

Now, the vector Zn is multiplied by the transform 

domain weight vector 

 Bn = [bn0, bn1 …….. bn(N – 1)]
T
  (9) 

to form the adaptive output. The output and the 

corresponding error signal are 

 Yn = Zn 
T 

Bn         (10) 

 and  n = dn - Yn          (11) 

The weight update equation is 

b(n + 1)i = bni + 21nZni, i = 0, 1, …., N – 1   (12) 

where, 1 =  / E(Zni
2
), i = 0, 1, ……, N – 1 is the 

adaptive step size for the i th transform component and 

 is a positive constant that governs the rate of 

convergence. Let 
2 

be a N x N diagonal matrix whose 

(i,j)th element is equal to the power estimate(computed 

by averaging with a moving window) of the Zni. The 

weight vector equation in matrix form is 

B(n + 1)i = Bn + 2 
-2
nZn     (13) 

The inverse of matrix 
2
 exists as long as the data 

autocorrelation matrix Rxx is positive definite. It can 

be shown that if  properly chosen, the weight vector 

converges to the transform domain optimum Weiner 

solution. 

  B
*
 = Rzz

-1
 Rzd   (14) 

where,  Rzz = E(Zn Zn
T
) = WRxx W

T
    

and   Rzzd = E(Zn dn) = WRxd (15) 

Then (3.23) can be written as . 

B
*
 = (W Rxx W

T
)
-1

 W Rxd = W Rxx
-1

 Rxd  (16) 

Using (12) , B
*
 can be expressed as 

   B
* 
= WA

*
             (17) 

The speed of convergence of the weight vector Bn now 

depends on the eigenvalue spread of the matrix         
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(
-1

Rzz ) .Without loss of generality, assume that the 

input signal power is unity i.e., 

  E(xn
2
) =1     (18) 

Let Tr(A) denote the trace and Det(A) denote the 

determinant of square matrix A. Then from matrix 

theory max.  Tr(A). For N larger than 2, it can be 

generally shown that max.  Det(A). Therefore, the 

ratio 

 (A) = Tr(A) / Det(A)   (19) 

can be used as an upper bound for max. / min..  

Now, Det(
-2

 Rzz )= Det(
-2

) Det(Rzz)  

= Det(
-2

) Det(Rxx)    (20) 

And Tr(
-2

Rzz)= Tr(Rxx) = N     (21) 

Therefore, (
-2

 Rzz) = Det(
2
 )(Rxx)    (22) 

Since Tr(
2
) = N , the Det(

2
) is always assumed to be 

less than or equal to unity. Hence, 

 (
-2

Rzz) < (Rxx)              (23) 

 

That is, for a properly chosen orthogonal transform W, 

some reduction in the eigenvalue spread can be 

expected. As a consequence of this, the transform 

domain adaptive algorithm can be expected to have a 

better convergence property than the corresponding 

time domain algorithm. A block diagram of the 

transform domain adaptive equaliser is shown in Fig. 3 

 

 

Fig. 3: TRANSFORM DOMAIN ADAPTIVE LMS 

EQUALISER 

6.  DFT DOMAIN LMS ALGORITHM (10) 

 Here, the input signal is filtered by a bank of 

large N complex band pass filter, implemented 

digitally by the DFT. That is, znk is given by the 

equation 

 







 
1N

0p

pk
N

2πj

pnnk 1N.......,..........1,0,k,exz
 (24)  

It can be easily shown that the corresponding recursive 

equation for znk  

 

 
 



  




1N

0p 1N..,..........1.........0,kxxk1n

nk

N,nn

k

N
2πj

e

zz

       (25)  

A block diagram of frequency domain adaptive filter is 

shown in Fig.3. The filtered signals are weighted and 

summed to produce the time domain output signal. 

The complex LMS algorithm (27, 29) is used to 

recursively update the weight vector Bn. The weight 

vector update equation is  

   ,ZεΛ2μBB nn

2

n1n



      (26)  

Where μ  is the adaptive step size and 2Λ  is an N x N 

diagonal matrix whose (i, i) element is equal to the 

power estimate (computed by averaging with a moving 

window) of the i th DFT output Zni. When both the 

input and the desired signals are real, bn0 is also real 

and the other components of the weight vector Bn 

satisfy the relation  

   .
2

N
,..........2,1,i,bb iNnni      (27)  

This fact can be used to reduce the computational 

requirements for weight vector updating. The inverse 

of the matrix 2Λ  exists as long as the data 

autocorrelation matrix Rxx is positive definite. The use 

of  μ  2-Λ  in controlling the adaptive step size is 

functionally equivalent to normalizing the power in 

each of the DFT bins to unity before weighting.  
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7. DGT DOMAIN EQUILISER AND LMS 

ALGORITHM (13, 14, 15, 16 and 17) 

 The Gabor transform is non-orthogonal 

transform and difficult to find out the Gabor 

coefficients. Using some approximation a novel 

technique is used to find out the Gabor coefficients 

and utilize it for channel equalisation. The Gabor 

transform for continuous signal is given by the 

following formula.  

 
 











 1

j2π2πKt

2

2

MK e
2T

MTtπ
expKCMtx

(28)  

As the elementary signal is not orthogonal the 

coefficients are best obtained by successive 

approximation. In the approximation it is considered 

that each horizontal strip with suffix M itself and 

expand the function x(t) as if the other strips do not 

exist, in the interval (tn – ½ T) to (tn + ½ T). In  the 

exponential function, which is independent of K has 

been brought over to the left. Then the new equation is 

given by  

  
 









0K

kt/Tj2π

MK2

2

1eC
2T

MTtπ
exptx  (29)  

Using the above equation and approximation the 

coefficients CMK can be found out easily because now 

the elementary signal is orthogonal.  

A. Critical Sampling  

 In critical sampling the T is equal to T1 as given 

in the equation 26.  The shifting period of the Gaussian 

window is taken to be T = ST2, where T2 is the time 

period between two signal sequences or sampling 

period. T2 is taken to be unity, so T = S. The critical 

sampling the new equation is given by  

  
 









0K

j2π2πKt

MK2

2

eC
2S

MStπ
exptx   (30)  

Considering the continuous case the coefficients CMK 

can be found out by Fourier series taking one strip at a 

time (for different values of M). Using the principle of 

DFT evaluation for finite length sequence and 

discretising the continuous signal the coefficients can 

be found out as follows:  

  





 
1S

0P

KP

S2

2

Pnkn 1SK,0W
2S

Pπ
expxC

0

 (31)  

Where,  KP/S2jKP

S eW    

  





 



12S

SP

KP

S2

2

Pnkn 1SK0,W
2S

SPπ
expxC

1

 (32) 

In this way the coefficients for the strips can be found 

out. Here n stands for nth iteration and 0, 1,… stands 

for different strips. A block diagram of the transform 

domain adaptive filter is shown in Fig.5. 2. The input 

signal is filtered by a band pass filters, implemented 

physically by Discrete Gabor Transform (DGT). The 

filtered are weighted and summed to produce the time 

domain output signal. 

   T

1Sn0n01n00n .........ZZZZ
0  .  

The vector Zn0 is coefficient of the first strip, where 

Zn00 = Cn00, 

 Zn01 = Cn01, is related to the input vector Xn0 (xn-p, p = 

0, 1, ……………., S – 1) by the orthogonal transform 

Zn0 = WXno, where W is a S x S DFT matrix whose (p, 

q) th element is 
 2ππpq/je

. The output of the first strip 

is given by :  

 n0

T

n0n0S BZY      (33)  

The output for the second strip is given by :  

 
n1

T

n1n1S BZY      (34)  

In this way output for other strips can be found out. 

The total output and error signal are found to be:  

 Yn = Yn0 + Yn1 + Yn2 … 
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and nε  = dn – yn   respectively, where Bn = [Bn0 Bn1 

Bn2 …………..]
T
 is the frequency domain vector Bn.  

The weight vector update equation is given by:  

B n+1=Bn +2µµn

 
 
 
 
 
 
 
 
 

  
     

  
     

  
     

  
     

 
 
 

     
           

 
 
 
 
 
 
 
 

Nx1 matrix (35) 

  Where μ  is the adaptive step size and 

.............., 2

1

2

0  are S x S diagonal matrix whose    (i,  

i) th element is equal to the power estimate of the i th 

DFT output of the different strips. The DGT LMS 

algorithm is used to update the weight vector Bn. 

When both the input and desired signals are real, the 

components of the weight vector Bn satisfy the 

relation.  

   .....S/2..........21,i,bb iS0nn0i    

B. Over Sampled Case  

 In over sampled case T1 is greater than T in the 

equation 26. In this case the numbers of coefficients 

are greater than number of signal sequences. Here the 

elements in the weight vector are greater than the 

number of input sequences. Mathematical equation in 

the over sampling is same as the critical sampling case.  

     







 





1Nk0,WnxkX
1N

0n

nk

N
 is a formula for 

finding DFT. If sequence x(n)  is shorter than N, for 

finding the coefficients X(k) zero is placed in the 

vacant place of x(n) sequence. This principle is 

adopted in over sampling case. 

8. ALGORITHM ISSUES    

Here the input vector Xn and Zn is the Gabor 

transformed vector. The vector Zn is related to the 

input vector Xn by the Gabor transformation Zn = WXn 

where, W is an N x N Gabor matrix. Thus Znk is given 

by the equation 







1)1(

)(
Nm

mNp

kp

Nnk WpnxZ  

k = 0, 1, …, N – 1. m = 0, 1, 2… 

The output and corresponding error signal are Yn = 

Zn
T
Bn and n = dn – yn respectively. The DGT LMS 

algorithm is used to recursively update the weight 

vector Bn. The weight vector equation is B(n + 1)i = Bn + 

2 
-2

 n Zn, where  is the adaptive step size and 
2
 is 

an N x N diagonal matrix whose (i,i) element is equal 

to the power estimate (computed by averaging with a 

moving window) of the i th DGT output Zni. 

9.  SIMULATION, EXPERIMENTAL RESULTS 

& ANALYSIS 

In this paper we have studied the performance 

of digital adaptive channel equaliser using three 

different techniques. In these study three channels of 

British telecommunications with eigenvalue 1.0, 11.8, 

and 68.6 have been used. The impulse response for 3 

channels of British Tele-communication is given in the 

table.  

Table 3 
 

CHANNEL 
No. 

IMPULSE RESPONSE EIGENVALUE 

1 1.0 + 0.0z-1 + 0.0z-2 1.0 

2 0.2602 + 0.9298z-1 11.8 

3 0.3482 + 0.8704z-1 + 
0.3482z-2 

68.6 

The effect additive noise on the performance of the 

channel equaliser has been seen by introducing -40 dB 

and -20dB noise to the channel. In the first techniques 

the equaliser is of time domain and uses most 

popular LMS algorithm for adaptation. The second  
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technique the delayed data samples are passed 

through an orthogonal discrete transform block 

and the transformed samples are used in the equaliser. 

In the third technique, DGT is used for equalization. 

As observed from the experiment, it is concluded that 

the time domain LMS equaliser is quite slow in 

convergence. The transform domain equaliser is much 

faster in convergence as compared to both time 

domain and DGT based equaliser. The DGT based 

equaliser is quite slow in convergence, but in this 

equaliser the noise recovery is better specially when 

the additive noise is large and the channel EVR is 

large. 

10.  PERFORMANCE COMPARISON 

In Fig 4, 6, and 8 the performance 

characteristics of the three types of equalisers 

(i) LMS time domain  

(ii) transform domain (DFT) and  

(iii)Gabor based adaptive equalisers are shown 

with additive noise level of –40dB. 

In Fig 5, 7 and 9 the performance characteristics of 

the three types of equalisers are shown with additive 

noise level of –20dB. The performance characteristics 

of channel 1, 2, 3 for the three adaptive have been 

compared in Fig 10, 11, 12. From this it can be seen 

that the time domain equaliser settles to –40dB  

 

 

 

 

MSE levels at about 300 iterations where as 

transform domain equaliser settles to –40dB at about 

100 iterations. But the DGT domain equaliser settles 

to about –38.7 dB at 2000 iterations. Fig 13, 14, 15 

show the performance of channel 1, 2and 3 with 

additive noise -20 dB. The time domain equaliser 

settles at –35 dB in 2000 iteration and transform 

domain equaliser settles at -35 dB in 400 iterations 

where as DGT equaliser settles to –36.5 dB at 2000 

iteration. Fig 10 shows the performance 

characteristics of channel 1. The MSE level settles at 

–12, -22 and –23 dB for time domain, transform 

domain and DGT equaliser respectively. Fig 13, 14 

and 15 depicts the performance characteristics of 3 

channels in case of –20dB additive noise.  Fig 13 

indicates the performance of channel 1. From this it 

can be seen that the time domain equaliser settles at –

20 dB at 300 iterations and transform domain 

equaliser settles at –18dB at 100 iterations where as 

the DGT domain equaliser settles at –20dB at 200 

iterations. Fig 14 shows the performance of channel 

2. The MSE settles at about –18 dB and –16 dB for 

the time domain and transform domain equaliser 

respectively but the rate of convergence is faster in 

latter case. The Digit domain equaliser settles at –18 

dB in 1000 iterations. Fig 15 indicates the channel 3 

performance both Time domain and Transform 

domain equaliser settles at about –12 dB where as the 

DGT domain equaliser settles at –12 dB in 2000 

iterations. 
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Table 4 
 

PERFORMANCE COMPARISON OF DIFFERENT CHANNRL EQUALISERS 

 

Additive 
Channel 

Time Domain Transform Domain DGT Domain 

Noise in 

dB 

Number 

1 2 3 

  

MSE Floor 

level 

in dB 

No. of 

Iterations 

For Setting 

MSE Floor 

Level in 

dB 

No. of 

Iterations 

For 

Setting 

MSE 

Floor level 

in dB 

No. of 

Iterations 

For Setting 

-40dB 

1 -40 300 -40 100 -38.7 2000 

2 -35 2000 -35 500 -36.5 2000 

3 -12 2000 -22 1000 -23 2000 

-20dB 

1 -20 300 -18 100 -20 200 

2 -18.3 1300 -16 400 -18 1000 

3 -12 2000 -14 1900 -12 2000 

 

11.  RESULT ANALYSIS 

 

 

 

Fig. 4: Performance characteristics of LMS Time Domain channel 

Equaliser: -40dB case 

 

 

 

 

 

Fig. 5: Performance characteristics of LMS Time Domain channel 

Equaliser: -20dB case 
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Fig. 6: Performance characteristics of DFT Transform Domain 

Adaptive Equaliser: -40dB  

 

           

Fig. 7: Performance characteristics of DFT Transform Domain 

Adaptive Equaliser: -20dB case 

 

 

Fig. 8: Performance characteristics of Gabor based Equaliser: -

40dB case 

 

Fig. 9: Performance characteristics of Gabor based Equaliser: - 

20dB case 

 

 

Fig. 10: Performance characteristics of LMS, DFT and DGT 

Equaliser: -40dB case 

 

 

Fig. 11: Performance characteristics of LMS, DFT and DGT 

Equaliser: -40dB case 
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Fig. 12: Performance characteristics of LMS, DFT and DGT 

Equaliser: -40dB case 

 

 
Fig. 13: Performance characteristics of LMS, DFT and DGT 

Equaliser: -20dB case 

 

 
 

Fig. 14: Performance characteristics of LMS, DFT and DGT 

Equaliser: -20Db case 

 

 
Fig. 15: Performance characteristics of LMS, DFT and DGT 

Equaliser: -20Db case 

 

CONCLUSION 

The present work deals with design and 

performance evaluation of different adaptive 

equalisers based on (i) time domain, (ii) transform 

domain and (iii) DGT domain. It is observed that the 

DGT domain adaptive equaliser performs better in 

comparison to the time domain and DFT domain 

equaliser. Gabor transform based equaliser, though has 

longer training time has been found to have better 

noise recovery property and lower MSE level 

especially when the additive noise in the channel is 

large. For example in channel 1 for –20 dB additive 

noise DGT domain adaptive equaliser  settles at –20 

dB at 200 iterations where as transform domain 

equaliser settles at about –18 dB at 100 iterations. 

Further studies may be carried out for reducing the 

convergence time of DGT domain equalisers and to 

develop other algorithms for better performance of 

DGT domain equalisers under high noise and channel 

EVR. 
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